Intracellular tracking with coated gold nanoparticles

Post new topic   Reply to topic    Institute of Nanotechnology Forum Index -> Nanobiomed
View previous topic :: View next topic  
Author Message
Site Admin

Joined: 16 Mar 2004
Posts: 1392

PostPosted: Tue Oct 10, 2006 2:44 pm    Post subject: Intracellular tracking with coated gold nanoparticles Reply with quote

Gold nanoparticles, with their novel optical and physical properties, have rapidly become a favorite tool of biomedical researchers, yet their ultimate utility in cancer research and clinical oncology depends on an ability to stably link them to targeting molecules and drugs. A new “bifunctional” coating that firmly attaches to the surface of gold nanoparticles while also providing an anchoring point for proteins and other molecules could overcome that limitation.
Mansoor Amiji, Ph.D., and colleagues at the Northeastern University Cancer Nanotechnology Platform Partnership have created a modified form of the biocompatible polymer poly(ethylene glycol) (PEG) to act as an all-purpose linker between gold nanoparticles and other molecules. In its native form, PEG has alcohol groups at each of its ends, and the North Eastern team had to solve the problem of converting only one of those alcohol groups into a thiol group, essentially swapping an oxygen atom for a sulphur atom. Sulphur forms tight chemical bonds with gold, while the remaining free alcohol group can create a chemical link to a wide variety of molecules ("Surface Functionalization of Gold Nanoparticles Using Hetero-Bifunctional Poly(Ethylene Glycol) Spacer for Intracelluar Tracking and Delivery").

The PEG molecule also acts as a spacer, affording enough distance between the gold nanoparticle and an attached protein, for example, so as to not interfere with the interaction of that protein with its biological target. In addition, PEG renders the particles invisible to macrophages, immune system cells that normally scavenge particles in the bloodstream, and prevents the gold nanoparticles from clumping in the bloodstream.

Having found a solution to this problem, the investigators used their bifunctional PEG to link a model fluorescent dye molecule to gold nanoparticles. They conducted toxicity assays with the resulting particles, finding that this construct was not toxic over a wide range of doses. The researchers then followed the nanoparticles, using fluorescence microscopy, as cells ferried the nanoparticles across their outer membranes and as the particles traveled within the cells. The researchers noted that the ability to attach a wide variety of molecules to the surfaces of gold nanoparticles and image them as they move through the cell should provide new tools for studying intracellular transport mechanisms.


This story was first posted on 1st August 2006.
Back to top
View user's profile Send private message
Display posts from previous:   
Post new topic   Reply to topic    Institute of Nanotechnology Forum Index -> Nanobiomed All times are GMT
Page 1 of 1

Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum

Powered by phpBB © 2001, 2002 phpBB Group