Biomechanical properties of novel plant protein structure

 
Post new topic   Reply to topic    Institute of Nanotechnology Forum Index -> Nanobiomed
View previous topic :: View next topic  
Author Message
nanoorg
Site Admin


Joined: 16 Mar 2004
Posts: 1392

PostPosted: Mon Apr 23, 2007 11:21 am    Post subject: Biomechanical properties of novel plant protein structure Reply with quote

Tiny device enables wide range of study at liquid-liquid interface


Researchers at Washington University in St. Louis are putting a different kind of "foursome" together in hopes of someday developing smart materials called biomimetics that mimic nature.

Amy Shen, Ph.D., assistant professor of mechanical and aerospace engineering, and her Washington University colleague William F. Pickard, Ph.D., senior professor of electrical and systems engineering, are collaborating with Michael Knoblauch, Ph.D., of Washington State University, and Winfried S. Peters, Ph.D., of Indiana University/Purdue University in Fort Wayne, on understanding a novel plant protein structure called forisome.

Shen and Pickard are probing the biomechanical properties of the forisome, which, in a variety of plants, responds to injury by swelling up in reaction to an increase of calcium. The swelling of the proteins within transport cells protects the plant from hemorrhaging nutrients. Once the danger passes, the forisomes go back to their original shapes.

The foursome's goal is to understand the system well enough to enable future collaborators to develop a chemically stable artificial forisome - a non-living system that can integrate functions such as sensing, acting and logic in response to external stimuli. Such a smart material would be biomimetic. One of the best examples of a natural system that exhibits the behavior that researchers would like to synthesize - a biomimetic - is the famed Venus flytrap.

Forisome is particularly attractive as a biomimetic smart material because, unlike most protein motors, it is not dependent on adenosine triphosphate (ATP) for its activation, making it more flexible.

Shen used a microfluidic device - a soft lithography system of micro-channels embedded in fluids, so small it fits in the palm of a hand - to see how the forisome proteins would react to changes in calcium, pH and the hydrodynamic environment itself.

Swell protein

Shen and her collaborators found that they could induce swelling easily as well as reverse the swelling in the device, rather more easily than other systems used previously to study the proteins.

"We're interested in the kinetics of the forisome proteins," Shen said. "We wanted to see how fast they change shape and also their potential as a smart material. We intend to do other experiments that might reveal the durability and actuation kinetics of forisomes."

Shen and her colleagues published their results in the July 2006 issue of Smart Structures and Systems, An International Journal, Vol. 2, Number 3, 225-236. A separate paper also was published on the prospective energy densities on forisome in 2006 in Materials Science and Engineering: C Biomimetic and Supramolecular Systems, 26 (1), 104-112, 2006.

Shen designs microfluidic devices to study a wide variety of complex fluids and how they behave hydrodynamically on a very small scale, anything" hard to see with the naked eye," she says. "The devices are useful for lots of applications, for making novel materials, drug delivery, and for studying the cellular and neuronal growth. We're able to observe interfacial phenomena under a microscope."



Source/more information: http://www.nanotechwire.com/news.asp?nid=4159

Story posted: 19th December 2006.
Back to top
View user's profile Send private message
Display posts from previous:   
Post new topic   Reply to topic    Institute of Nanotechnology Forum Index -> Nanobiomed All times are GMT
Page 1 of 1
 

 
Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2002 phpBB Group