Venus flytrap inspires nanotechnology

 
Post new topic   Reply to topic    Institute of Nanotechnology Forum Index -> Nanobiomed
View previous topic :: View next topic  
Author Message
nanoorg
Site Admin


Joined: 16 Mar 2004
Posts: 1392

PostPosted: Thu Jul 05, 2007 11:15 am    Post subject: Venus flytrap inspires nanotechnology Reply with quote

A keen sensitivity to their environment allows venus flytraps to ensnare their insect meals. Gently graze their trigger hairs, and the carnivorous plants will clamp together their jawlike leaves. Such responsive behavior, which is intrinsic to natural systems, is becoming a key requirement for advanced artificial materials and devices, presenting a substantial scientific and engineering challenge. Materials scientists have now managed to replicate this acute environmental sensitivity on the nanometer scale ("Reversible Switching of Hydrogel-Actuated Nanostructures into Complex Micropatterns"). Dynamic control over the movement and orientation of surface nanofeatures at the micron and submicron scales may have exciting applications in actuators, microfluidics, or responsive materials.

Joanna Aizenberg, of Bell Laboratories in Murray Hill, N.J., and coworkers created their own adaptive material by partially covering an array of slender silicon nanocolumns with a layer of flexible hydrogel. The nanocolumns were put in motion by the "muscle" of the hydrogel, which swells or contracts depending on the humidity level.

In moist air, water plumps up the hydrogel so that the nanocolumns stand upright. Dry surroundings strip moisture from the hydrogel, making it pull taut across the array, tilting the columns.

By further controlling the stress field in the hydrogel, the formation of a variety of elaborate reversibly actuated micropatterns was demonstrated.

By etching patterns onto the array's substrate, Aizenberg's group can choreograph the columns' movement. They can prompt the spikes to snap together in four-pronged snares or to blossom into a field of microflowers.

"Such complex patterned movements would be impossible in the other reported artificial systems, in which polymers are actuated by an electric or magnetic field," Aizenberg says. Potential applications include a coating that's hydrophobic in humid air and hydrophilic in dry air.





Sources: http://www.nanowerk.com/news/newsid=1361.php



Story first posted: 30th January 2007.
Back to top
View user's profile Send private message
Display posts from previous:   
Post new topic   Reply to topic    Institute of Nanotechnology Forum Index -> Nanobiomed All times are GMT
Page 1 of 1
 

 
Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2002 phpBB Group