Researchers make important advance in 'spintronics'

 
Post new topic   Reply to topic    Institute of Nanotechnology Forum Index -> Nanotechnology
View previous topic :: View next topic  
Author Message
nanoorg
Site Admin


Joined: 16 Mar 2004
Posts: 1392

PostPosted: Thu Oct 11, 2007 12:22 pm    Post subject: Researchers make important advance in 'spintronics' Reply with quote

Researchers study electron spin relaxation in organic nanostructures

Researchers have made an important advance in the emerging field of 'spintronics' that may one day usher in a new generation of smaller, smarter, faster computers, sensors and other devices, according to findings reported in today's issue of the journal Nature Nanotechnology.

The research field of 'spintronics' is concerned with using the 'spin' of an electron for storing, processing and communicating information.

The research team of electrical and computer engineers from the Virginia Commonwealth University’s School of Engineering and the University of Cincinnati examined the ‘spin’ of electrons in organic nanowires, which are ultra-small structures made from organic materials. These structures have a diameter of 50 nanometers. The spin of an electron is a property that makes the electron act like a tiny magnet. This property can be used to encode information in electronic circuits, computers, and virtually every other electronic gadget.

“In order to store and process information, the spin of an electron must be relatively robust. The most important property that determines the robustness of spin is the so-called ‘spin relaxation time,’ which is the time it takes for the spin to ‘relax.’ When spin relaxes, the information encoded in it is lost. Therefore, we want the spin relaxation time to be as long as possible,” said corresponding author Supriyo Bandyopadhyay, Ph.D., a professor in the Department of Electrical and Computer Engineering at the VCU School of Engineering.

“Typically, the spin relaxation time in most materials is a few nanoseconds to a few microseconds. We are the first to study spin relaxation time in organic nanostructures and found that it can be as long as a second. This is at least 1000 times longer than what has been reported in any other system,” Bandyopadhyay said.

The team fabricated their nanostructures from organic molecules that typically contain carbon and hydrogen atoms. In these materials, spin tends to remain relatively isolated from perturbations that cause it to relax. That makes the spin relaxation time very long.

The VCU-Cincinnati team was also able to pin down the primary spin relaxation mechanism in organic materials, which was not previously known. Specifically, they found that the principal spin relaxation mechanism is one where the spin relaxes when the electron collides with another electron, or any other obstacle it encounters when moving through the organic material. This knowledge can allow researchers to find means to make the spin relaxation time even longer.

“The organic spin valves we developed are based on self-assembled structures grown on flexible substrates which could have a tremendous impact on the rapidly developing field of plastic electronics, such as flexible panel displays,” said Marc Cahay, Ph.D., a professor in the Department of Electrical and Computer Engineering at the University of Cincinnati. “If the organic compounds can be replaced by biomaterials, this would also open news areas of research for biomedical and bioengineering applications, such as ultra-sensitive sensors for early detection of various diseases.”

“These are very exciting times to form interdisciplinary research teams and bring back the excitement about science and engineering in students at a very young age to raise them to become the future generations of nanopioneers,” Cahay said.

The fact that the spin relaxation time in organic materials is exceptionally long makes them the ideal host materials for spintronic devices. Organic materials are also inexpensive, and therefore very desirable for making electronic devices.




Source: http://www.physorg.com/news93540309.html


Story first posted: 20th March 2007.
Back to top
View user's profile Send private message
Display posts from previous:   
Post new topic   Reply to topic    Institute of Nanotechnology Forum Index -> Nanotechnology All times are GMT
Page 1 of 1
 

 
Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2002 phpBB Group