Self-assembled nanostructures function better than bone

 
Post new topic   Reply to topic    Institute of Nanotechnology Forum Index -> Nanobiomed
View previous topic :: View next topic  
Author Message
nanoorg
Site Admin


Joined: 16 Mar 2004
Posts: 1392

PostPosted: Wed Apr 02, 2008 3:20 pm    Post subject: Self-assembled nanostructures function better than bone Reply with quote

11 July 2007 Sandia National Laboratories
Self-assembled nanostructures function better than bone as porosity increases

Improved possibilities for microelectronics, membranes

Naturally occurring structures like birds’ bones or tree trunks are thought to have evolved over eons to reach the best possible balance between stiffness and density.

But in a June paper in Nature Materials, researchers at Sandia National Laboratories and the University of New Mexico (UNM), in conjunction with researchers at Case Western Reserve and Princeton Universities, show that nanoscale materials self-assembled in artificially determined patterns can improve upon nature’s designs.

“Using self-assembly we can construct silica materials at a finer scale than those found in nature,” says principal investigator Jeff Brinker. “Because, at very small dimensions, the structure and mechanical properties of the materials change, facile fabrication of stiff, porous materials needed for microelectronics and membrane applications may be possible.”

Sandia is a National Nuclear Security Administration laboratory.

Nuclear magnetic resonance and Raman spectroscopic studies performed by Sandia researchers Roger Assink (ret.) and Dave Tallant, along with molecular modeling studies performed by Dan Lacks at Case Western Reserve University, showed that, as the ordered porous films became more porous, the silica pore walls thinned below 2 nm, re-arranging the silica framework to become denser and stiffer.
On the left is a TEM micrograph of a porous, cube-like nanostructure. On the right is a blow-up of the silica framework (the dark <2-nm thick regions on the left side figure) based on modeling. The highlighted structures represent the small rings referred to in the news release. (Image: Sandia)

Whereas the stiffness of evolved optimized bone declines proportional to the square of its density, mechanical studies performed by Sandia researcher Thomas Buchheit working with UNM student Christopher Hartshorn showed that the stiffness/modulus of self-assembled materials was much less sensitive to increasing porosity: For a material synthesized with a cubic arrangement of pores, the modulus declined only as the square root of its density.

The silica nanostructures — basically a synthetic analogue of bone-like cellular structures, replicated at the nanoscale using silica compounds — thus may improve performance where increased pore volume is important. These include modern thin-film applications such as membrane barriers, molecular recognition sensors, and low-dielectric-constant insulators needed for future generation of microelectronic devices.

“Bone, closely examined, is a structured cellular material,” says Brinker, a Sandia Fellow and chemical engineering professor at UNM. “Because, using self-assembly, we had demonstrated the fabrication of a variety of ordered cellular materials at the nanoscale with worm-like (curving cylinders), hexagonal (soda straw packing) and cubic sphere arrangements of pores, we wondered whether the modulus-density scaling relationships of these nanoscale materials would be similar to the optimized evolved materials [like bone]. We found that both material structure and pore sizes matter. At all densities we observed that the cubic arrangement was stiffer than the hexagonal arrangement, which was stiffer than the worm-like. For each of these structures, increasing porosity caused a reduction in modulus, but the reduction was less than for theoretically optimized or naturally evolved materials due to the attendant stiffening of the thinning nanoscale silica walls resulting from the formation of small stiff silica rings.

“This change in ring structure only happens at the nanoscale,” says Brinker.

Sandia researcher Hongyou Fan created cubic, cylindrical, and worm-like (or disordered) pores to evaluate differences in stiffness resulting from these differently shaped internal spaces.



Source: http://www.sandia.gov/news/resources/releases/2007/[..]





Story posted: 11th July 2007
Back to top
View user's profile Send private message
Display posts from previous:   
Post new topic   Reply to topic    Institute of Nanotechnology Forum Index -> Nanobiomed All times are GMT
Page 1 of 1
 

 
Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2002 phpBB Group