Selective Tumour Uptake of Nanoparticles

Post new topic   Reply to topic    Institute of Nanotechnology Forum Index -> Nanobiomed
View previous topic :: View next topic  
Author Message
Site Admin

Joined: 16 Mar 2004
Posts: 1392

PostPosted: Mon Aug 18, 2008 2:45 pm    Post subject: Selective Tumour Uptake of Nanoparticles Reply with quote

07 October 2007 NanoTechWire
Novel 3-D Cell Culture Model Shows Selective Tumour Uptake of Nanoparticles

A nanoparticle drug delivery system designed for brain tumour therapy has shown promising tumour cell selectivity in a novel cell culture model devised by University of Nottingham scientists. The results of this research, which was conducted by Martin Garnett, Ph.D., and colleagues, appear in the journal Experimental Biology and Medicine.

The nanoparticles used in this study were prepared from a novel biodegradable polymer poly(glycerol adipate). The polymer has been further modified to enhance incorporation of drugs and make the nanoparticles more effective.

To test the nanoparticles, the investigators developed a new in vitro system that should prove useful in a variety of brain cancer studies. "The interaction of tumour cells with brain cells varies between different tumours and different locations within the brain," explained Terence Parker, Ph.D., another investigator involved in this study. "Using three-dimensional culture models is therefore important in ensuring that the behavior of cells in culture is similar to that seen in real life."

Tumour cell aggregates have been used as cell culture models of cancer cells for many years. Similarly, thin brain slices from newborn rats can be cultured for weeks and are an important tool in brain biology. In the cell co-culture model now reported, these two techniques have been brought together for the first time. Brain tumour cell aggregates were labeled with fluorescent iron microparticles and grown on normal newborn rat brain tissue slices.

The double-cell labeling technique allowed investigation of tumour cell invasion into brain tissue by either fluorescence or electron microscopy from the same samples. Using these techniques, the tumour aggregates were found to invade the brain slices in a similar manner to tumours in the body.

This work is detailed in the paper, "Evaluation of poly(glycerol adipate) nanoparticle uptake in an in vitro 3-D brain tumour co-culture model."

Back to top
View user's profile Send private message
Display posts from previous:   
Post new topic   Reply to topic    Institute of Nanotechnology Forum Index -> Nanobiomed All times are GMT
Page 1 of 1

Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum

Powered by phpBB © 2001, 2002 phpBB Group