New Ultrasound Technique Improves Nanoparticle Drug Delivery

Post new topic   Reply to topic    Institute of Nanotechnology Forum Index -> Nanobiomed
View previous topic :: View next topic  
Author Message
Site Admin

Joined: 03 Oct 2005
Posts: 432

PostPosted: Thu Jan 12, 2006 10:53 am    Post subject: New Ultrasound Technique Improves Nanoparticle Drug Delivery Reply with quote

Researchers at Washington University Use New Ultrasound Technique to Improve Nanoparticle Drug Delivery into Cells

Targeted nanoparticles, which bind to molecules found only on the surfaces of tumor cells, have shown tremendous promise for increasing the effectiveness of anticancer agents while reducing the potential for side effects. Now, investigators at Washington University School of Medicine have taken targeting one step further by using ultrasound to increase the efficiency with which that targeted nanoparticles deliver drugs into cells.

Reporting its work in the journal Ultrasound in Medicine and Biology, a team headed by Samuel Wickline, M.D., and Gregory Lanza, M.D., conducted its experiments using the liquid perfluorocarbon nanoparticles that it has been developing as targeted cancer drug delivery agents over the past several years. At least one such formulation is on track to begin human clinical trials within the next year or so. The investigators also used commercially available diagnostic ultrasound equipment, the same gear that obstetricians use today to generate sonograms of a developing fetus, to generate focused ultrasonic energy designed to enhance drug delivery.

In these experiments, the nanoparticles were constructed to display a molecule that binds specifically to a protein known as v3 (pronounced alpha-v-beta-three), which is found on the surface of certain types of cancer cells, including melanoma cells. The investigators loaded the nanoparticles with a fluorescent dye, rather than an anticancer drug, to follow the fate of the nanoparticles and their cargo when mixed with melanoma cells growing in culture.

After mixing the nanoparticles with cultured melanoma cells, the investigators applied ultrasonic energy for five minutes. Using a fluorescence microscope, the researchers observed that the cells subject to ultrasound took up approximately 10 times more of the fluorescent dye than when no ultrasound is applied. Indeed, the researchers obtained images of the dye streaming into the cell’s plasma membrane and on into the cytoplasm. Control experiments using ultrasound energy and no nanoparticles showed that cells were not damaged by the application of ultrasonic energy for five minutes.

The researchers note that these results support the hypothesis that ultrasound enhances the exchange of molecules between the fat-soluble nanoparticle components and the lipids (fatty molecules) that make up the cell membrane. They also comment in their paper that enhanced, nanoparticle-aided drug delivery using widely available ultrasound equipment could markedly improve the safety of cancer therapy while reducing the amount of drug used and lowering the cost of therapy.

This work, funded in part by the National Cancer Institute, is detailed in a paper titled, “Sonic activation of molecularly-targeted nanoparticles accelerates transmembrane lipid delivery to cancer cells through contact-mediated mechanisms: Implications for enhanced local drug delivery.” Dr. Wickline is the director of the Siteman Center of Cancer Nanotechnology Excellence. An abstract of this paper is available through PubMed.

Source: NCI Alliance for Nanotechnology in Cancer.


This story was posted on 11 January 2006.
Back to top
View user's profile Send private message
Display posts from previous:   
Post new topic   Reply to topic    Institute of Nanotechnology Forum Index -> Nanobiomed All times are GMT
Page 1 of 1

Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum

Powered by phpBB © 2001, 2002 phpBB Group