New method speeds nanoparticle production rate by 500 times
Image Credit: Oregon State University.
Engineers at Oregon State University have discovered a new method to speed the production rate of nanoparticles by 500 times, an advance that could play an important role in making nanotechnology products more commercially practical.
The approach uses an arrayed microchannel reactor and a “laminated architecture” in which many sheets, each with thousands of microchannels in them, are stacked in parallel to provide a high volume of production and excellent control of the processes involved.
Applications could be possible in improved sensors, medical imaging, electronics, and even solar energy or biomedical uses when the same strategy is applied to abundant materials such as copper, zinc or tin.
A patent has been applied for, university officials say. The work, just published in the journal Nanotechnology, was done in the research group of Brian Paul, a professor in the OSU School of Mechanical, Industrial and Manufacturing Engineering.
“A number of new and important types of nanoparticles have been developed with microtechnology approaches, which often use very small microfluidic devices,” said Chih-hung Chang, a professor in the OSU School of Chemical, Biological and Environmental Engineering, and principal investigator on the study.
“It had been thought that commercial production might be as simple as just grouping hundreds of these small devices together,” Chang said. “But with all the supporting equipment you need, things like pumps and temperature controls, it really wasn’t that easy. Scaling things up to commercial volumes can be quite challenging.”
The new approach created by a research team of five engineers at OSU used a microreactor with the new architecture that produced “undecagold nanoclusters” hundreds of times faster than conventional “batch synthesis” processes that might have been used.
“In part because it’s faster and more efficient, this process is also more environmentally sensitive, using fewer solvents and less energy,” Chang said. “This could be very significant in helping to commercialize nanotech products, where you need high volumes, high quality and low costs.”
This research, Chang said, created nanoparticles based on gold, but the same concept should be applicable to other materials as well. By lowering the cost of production, even the gold nanoclusters may find applications, he said, because the cost of the gold needed to make them is actually just a tiny fraction of the overall cost of the finished product.
Nanoparticles are extraordinarily tiny groups of atoms and compounds that, because of their extremely small size and large surface areas, can have unusual characteristics that make them valuable for many industrial, electronic, medical or energy applications.
This work was supported by the Safer Nanomaterials and Nanomanufacturing Initiative of the Oregon Nanoscience and Microtechnologies Institute, or ONAMI. Funding was also provided by the Air Force Research Laboratory and the W.M. Keck Foundation.
Source: Oregon State University /...
Previous Story: Graphene Oxide could provide massive benefits to electron microscopes work
Next Story: Faster detection of cancer growth using microfluidics-imaging platform
The Institute of Nanotechnology puts significant effort into ensuring that the information provided on its news pages is accurate and up-to-date. However, we cannot guarantee absolute accuracy. Consequently, the Institute of Nanotechnology disclaims any and all responsibility for inaccuracy, omission or any kind of deficiency in relation to the news items and articles hosted herein.
Latest News
- 17 May 2013NanoSustain Factsheet and Case Studies
- 16 May 2013Making Gold Green: New Non-Toxic Method for Mining Gold
- 13 May 2013Cold atoms for quantum technology
- 02 May 2013Quantum information: Computing with a single nuclear spin in silicon
- 30 April 2013LESL launches start up challenge to celebrate 25th anniversary
- View All


Leave a Comment