Chemical Transformations in Cobalt Nanoparticles
Image Credit: Cornell University.
Understanding the intricacies of how nanoparticles undergo chemical transformations could lead to better ways to tailor their composition, which can lead to advanced material properties.
Using the Cornell High Energy Synchrotron Source, scientists led by Richard Robinson, assistant professor of materials science and engineering, uncovered exactly what happens when cobalt nanoparticles transform into two phases of cobalt phosphides.
Their work, published in the Journal of Materials Chemistry, was featured by the journal as a "Hot Article" earlier this month.
The effect Robinson's team observed in the cobalt phosphide transitions was a nanoparticle hollowing due to asymmetric diffusivities of cations and anions. In other words, the cations move out from the core faster than anions can diffuse in, leading to a hollow particle.
Other groups have reported on this "Kirkendall" effect, but the Robinson team was the first to show that this hollowing is more complex than previously thought and can be studied as a two-step process. Their work could be used to control this process and produce complex particles with properties tailored for use in energy applications. Metal phosphides have a wide range of properties -- ferromagnetism, superconductivity, catalytic activity and magnetoresistance among them.
The work was done in collaboration with scientists led by Richard Hennig, assistant professor of materials science and engineering. It was supported by King Abdullah University of Science and Technology, the Cornell Center for Materials Research and the Energy Materials Center at Cornell.
Source: Cornell University /...
Previous Story: Nanopillars Boost Power Conversion Efficiency of Thin-Film Solar Cells
Next Story: Congressional Nanotechnology Caucus Seeks Members
The Institute of Nanotechnology puts significant effort into ensuring that the information provided on its news pages is accurate and up-to-date. However, we cannot guarantee absolute accuracy. Consequently, the Institute of Nanotechnology disclaims any and all responsibility for inaccuracy, omission or any kind of deficiency in relation to the news items and articles hosted herein.
Latest News
- 17 May 2013NanoSustain Factsheet and Case Studies
- 16 May 2013Making Gold Green: New Non-Toxic Method for Mining Gold
- 13 May 2013Cold atoms for quantum technology
- 02 May 2013Quantum information: Computing with a single nuclear spin in silicon
- 30 April 2013LESL launches start up challenge to celebrate 25th anniversary
- View All


Leave a Comment