Scientists Conduct World’s Smallest Experiment in Nano Test Tube
Image Credit: University of Texas.
Researchers at The University of Texas at Austin have conducted a basic chemistry experiment in what is perhaps the world's smallest test tube, measuring a thousandth the diameter of a human hair.
The nano-scale test tube is so small that a high-power electron microscope was required to see the experiment.
Made from a thin shell of carbon, the test tube was stuffed with a thread-like crystal (a nanowire) of germanium with a tiny particle of gold at its tip.
The researchers heated the test tube and watched as the gold melted at the end of the nanowire, much like any solid crystal heated above its melting temperature in a glass test tube.
"The experiment is relatively simple," said chemical engineer Brian Korgel, whose laboratory conducted it. "Essentially, we observe well-known phenomena, like melting, capillarity and diffusion, but all at a much, much smaller scale than has been possible to see before."
Watch a video of the nano test tube experiment conducted in Korgel's lab.
Such experiments provide new fundamental insights about how nanomaterials behave, and might be used to create new technologies, from better solar cells to unprecedentedly strong yet light-weight materials to higher performance optical displays and computing technologies.
Korgel and graduate students Vincent Holmberg and Matthew Panthani conducted the experiment, which was reported in the Oct. 16 edition of Science.
During the experiment, the nanowire melted as the temperature rose, but its shape was retained because the carbon test tube maintained its shape.
"In these very small structures, the phase behavior (like its melting temperature, etc.) can be different than bulk materials and can be size-dependent," Korgel said. "Therefore, if the structure changes when the phase change happens, then the result becomes very difficult to interpret and in fact, may not even represent the true behavior of the system."
The carbon test tube, however, provided a rigid container for studying what happens when materials are heated and melted at the nanoscale.
Source: University of Texas /...
Previous Story: New EEB report assesses critical governance issues of nanotechnologies
Next Story: Water + Sunlight + Carbon Nanotubes = Green Hydrogen Fuel, say Scientists
The Institute of Nanotechnology puts significant effort into ensuring that the information provided on its news pages is accurate and up-to-date. However, we cannot guarantee absolute accuracy. Consequently, the Institute of Nanotechnology disclaims any and all responsibility for inaccuracy, omission or any kind of deficiency in relation to the news items and articles hosted herein.
Latest News
- 17 May 2013NanoSustain Factsheet and Case Studies
- 16 May 2013Making Gold Green: New Non-Toxic Method for Mining Gold
- 13 May 2013Cold atoms for quantum technology
- 02 May 2013Quantum information: Computing with a single nuclear spin in silicon
- 30 April 2013LESL launches start up challenge to celebrate 25th anniversary
- View All


Leave a Comment