Top Rounded Image
17 January 2012 NIBEC, University of Ulster

Industrial scale graphene breakthrough by University of Ulster

Simple green production of high quality graphene nanosheets and quantum dots in bulk amounts

AFM image of graphene quantum dots, produced with a grinding time of 4 hours
AFM image of graphene quantum dots, produced with a grinding time of 4 hours.
Image Credit: Prof.Papakonstantinou, University of Ulster.

A University of Ulster laboratory has found a simple, low cost and environmentally friendly way to turn common graphite flakes into bulk amounts of either high quality graphene nanosheets or quantum dots. Such structures could lead to new nanoelectronics and energy conversion technologies.

The University of Ulster (UU) lab of carbon based nanomaterials led by Pagona Papakonstantinou who is a Professor of Advanced Materials at UU, Engineering Research Institute, in collaboration with colleagues in China, UK, and Ireland, has discovered a simple process, which is quicker and environmentally friendlier than currently established techniques for making high quality graphene (single sheet of graphite) nanosheets and quantum dots at an industrial scale. The results have been published online this month in the Royal Chemical Society's journal Chemical Communications

Quantum dots are tiny islands of electrons, which can be used as building blocks for controlling the flow of electrons at the single electron level. Graphene quantum dots can be created by cutting sheets of graphene into small islands of the desired shape. Past attempts to create high quality graphene quantum dots, have involved sophisticated equipment or expensive raw materials, which have resulted in low yields. On the other hand, up to now, solution processes to produce graphene nanosheets and quantum dots in high yields have involved the use of strong acids or prolonged sonication, which introduce defects on the graphene nanocrystal.

The UU researchers came up with a simple solution to produce high quality graphene nanosheets and dots. They ground cheap graphite flakes with a small quantity of ionic liquid to produce a gel and subsequently cleaned the ionic liquid. The grinding in ionic liquid helps to simultaneously fragment and exfoliate graphite flakes into graphene nanosheets. Their size could be tailored by applying different the grinding times. When longer grinding times are used, graphene quantum dots with an average diameter of 10 nm and a thickness of 2 to five graphene layers are the dominant products.

The most important attribute of the produced graphene nanosheets and quantum dots compared to those reported in the literature is that they are clean from any solvent contamination and possess a low concentration of oxygen, which is inherited from the starting graphite powder. The X ray photoelectron spectra of Figure attached illustrate that the graphene products possess the same amount of oxygen as that found in the starting graphite flakes. Supported by other microstructural investigations, this suggests that the center of graphene nanosheets and quantum dots is free of defects and therefore it would be possible to maintain very high mobilities suitable for nanoelectronic devices.

Prof Papakonstantinou explains: “Our procedure is mild and relies on pure shear forces to detach the graphene layers from the graphite flakes. Therefore, in contrast to other techniques reported so far, severe defect formation on the crystalline plane of graphene is avoided. No acids or prolonged sonication are used, resulting in high quality material. Moreover our method has the potential to be applied to other layered materials such as MoS2 or BN in addition to graphite. ”

Dr Nai-Gui Shang, a researcher at UU, comments: “Grinding is a Chinese traditional way of making ink for calligraphy and painting for over two thousand years, where the ink is produced by grinding the ink stick in a ink slab, mixed with a small amount of water. We thought why not try it with graphite flakes?. Here, ionic liquid used as a novel green grinding agent, plays a critical role in the both good quality and high yield of graphene nanostructures. We believe that graphene nanostructures produced in this way can be applied successfully to inkjet printing of nanoelectronics”.

Armed with valuable experience on how to produce controllably graphene nanosheets and quantum dots, the UU researchers are currently exploiting the large amount of catalytic edges for energy conversion applications.

The research was supported by the INVEST Northern Ireland (Proof of Concept Award POC114), Royal Academy of Engineering/Leverhulme Trust Senior Research Fellowship (to PP), EPSRC funded facility access to HRTEM at the University of Nottingham and University of St Andrews, and the Tyndall National Access Programme, NAP supported by SFI.

“Controllable selective exfoliation of high-quality graphene nanosheets and nanodots by ionic liquid assisted grinding”, Nai Gui Shang, Pagona Papakonstantinou, Surbhi Sharma, Gennady Lubarsky, Meixian Li, David W. McNeill, Aidan J. Quinn, Wuzong Zhou and Ross Blackley, Chemical Communications, 2012, 48, 1877 – 1879. DOI:10.1039/C2CC17185F

Full caption for image: AFM image of graphene quantum dots dots, produced with a grinding time of 4 hours. The nanodots present a monodispersion in height of only 1–3 nm (few layer graphene) and in diameter of only 10 nm. (a) and (b) XPS spectra of graphene nanosheets and starting graphite, respectively. This demonstrates that the graphene sheets are clean and free of any impurities and contaminations from the chemicals used, except for a small amount of oxygen inherited from the starting graphite material.

Source: NIBEC, University of Ulster /...

Previous Story: Discovering the Materials World of Africa
Next Story: Particle-free silver ink prints small, high-performance electronics

Bookmark and Share

Leave a Comment

The Institute of Nanotechnology puts significant effort into ensuring that the information provided on its news pages is accurate and up-to-date. However, we cannot guarantee absolute accuracy. Consequently, the Institute of Nanotechnology disclaims any and all responsibility for inaccuracy, omission or any kind of deficiency in relation to the news items and articles hosted herein.

Bottom Rounded Image