Top Rounded Image
12 January 2010 Technology Review

New solar cells show gains in efficiency

Silicon Microwires Could Have a Sunny Future

Standing tall: This silicon microwire solar cell array grown with a copper catalyst is roughly twice as efficient as prior nanowire cells grown with a gold catalyst
Standing tall: This silicon microwire solar cell array grown with a copper catalyst is roughly twice as efficient as prior nanowire cells grown with a gold catalyst.
Image Credit: Caltech.

The race for inexpensive, highly efficient solar cells may have gained another contender in the form of silicon microwires. Efforts to develop ultra-thin wires that convert sunlight into electricity are not new to the solar power field, but a new method for growing the wires has roughly doubled their conversion efficiency and may hold the key for even larger gains.

"All wires thus far have had 1 or 2 percent efficiency [at the array level] with fundamental questions about whether they could ever go higher," says Nathan Lewis, a chemist at Caltech who coauthored the study, which appears in Science."We've demonstrated 3 percent efficiency and shown that there is no fundamental reason they can't perform at over 10 percent."

Silicon nanowires, or in this case slightly larger-diameter microwires, are typically grown from a silicon substrate with the help of tiny gold droplets. Under high temperatures, a single wire will quickly sprout from each droplet like a blade of grass. Gold is an excellent catalyst for wire growth, but it also introduces impurities that are generally believed to inhibit electron transport within the wires, reducing their overall efficiency.

Using copper instead of gold as the catalyst, Lewis and colleagues achieved roughly twice the efficiency of prior efforts in an array of wires. They believe the results are due to higher silicon purity and increased electron transport capacity compared to prior efforts that relied on gold catalysts.

In what they are calling a proof of concept study, the researchers kept the "packing fraction" of their array at 4 percent. Packing is a measure of how much of the surface of an array has wires protruding from it. A packing fraction of 4 percent means that 96 percent of the surface of the array has no wires and therefore is incapable of capturing sunlight and converting it into electricity. Lewis says that simply increasing the packing fraction to 15 to 20 percent will result in a fourfold increase in efficiency.

Some doubt it will be that simple. "If it's that easy, why haven't they done it?" asks Ray LaPierre a professor in the engineering physics department at McMaster University in Ontario. LaPierre says increasing the packing fraction is technically feasible through a technique known as "photolithography," but this would likely be prohibitively expensive for commercial solar cell production.

Source: Technology Review /...

Previous Story: Tunisia launches debut nanotech project
Next Story: Tiny Particles Hold Key to Heart Disease Treatment

Bookmark and Share

Leave a Comment

The Institute of Nanotechnology puts significant effort into ensuring that the information provided on its news pages is accurate and up-to-date. However, we cannot guarantee absolute accuracy. Consequently, the Institute of Nanotechnology disclaims any and all responsibility for inaccuracy, omission or any kind of deficiency in relation to the news items and articles hosted herein.

Bottom Rounded Image