Intelligent molecular computer built using lessons from human brain
Image Credit: Anirban Bandyopadhyay.
A team of researchers from Japan and Michigan Technological University has built a molecular computer using lessons learned from the human brain.
Physicist Ranjit Pati of Michigan Tech provided the theoretical underpinnings for this tiny computer composed not of silicon but of organic molecules on a gold substrate. “This molecular computer is the brainchild of my colleague Anirban Bandyopadhyay from the National Institute for Materials Science,” says Pati. Their work is detailed in “Massively Parallel Computing on an Organic Molecule Layer,” published April 25 online in Nature Physics.
“Modern computers are quite fast, capable of executing trillions of instructions a second, but they can’t match the intelligent performance of our brain,” says Pati. “Our neurons only fire about a thousand times per second. But I can see you, recognize you, talk with you, and hear someone walking by in the hallway almost instantaneously, a Herculean task for even the fastest computer.”
That’s because information processing is done sequentially in digital computers. Once a current path is established along a circuit, it does not change. By contrast, the electrical impulses that travel through our brains follow vast, dynamic, evolving networks of neurons that operate collectively.
The researchers made their different kind of computer with DDQ, a hexagonal molecule made of nitrogen, oxygen, chlorine and carbon that self-assembles in two layers on a gold substrate.
The DDQ molecule can switch among four conducting states—0, 1, 2 and 3—unlike the binary switches—0 and 1—used by digital computers.
“The neat part is, approximately 300 molecules talk with each other at a time during information processing,” Pati says. “We have mimicked how neurons behave in the brain.”
“The evolving neuron-like circuit network allows us to address many problems on the same grid, which gives the device intelligence," Pati says. As a result, their tiny processor can solve problems for which algorithms on computers are unknown, especially interacting many-body problems, such as predictions of natural calamities and outbreaks of disease. To illustrate this feature, they mimicked two natural phenomena in the molecular layer: heat diffusion and the evolution of cancer cells.
In addition, their molecular processor heals itself if there is a defect. This property comes from the self-organizing ability of the molecular monolayer. “No existing man-made computer has this property, but our brain does,” Bandyopadhyay says. “If a neuron dies, another neuron takes over its function.”
“This is very exciting, a conceptual breakthrough,” Pati says. “This could change the way people think about molecular computing.”
Pati’s work at Michigan Tech is supported by the National Science Foundation.
An abstract of “Massively Parallel Computing on an Organic Molecule Layer” is available at Nature Physics. Additional coauthors are Satyajit Sahu and Daisuke Fujita of the National Institute for Materials Science, Japan, and Ferdinand Peper of the National Institute of Information and Communications Technology, Japan.
Source: Michigan Tech /...
Previous Story: Micro-Supercapacitors set for future use
Next Story: WANDA - The Robotic Engineer
The Institute of Nanotechnology puts significant effort into ensuring that the information provided on its news pages is accurate and up-to-date. However, we cannot guarantee absolute accuracy. Consequently, the Institute of Nanotechnology disclaims any and all responsibility for inaccuracy, omission or any kind of deficiency in relation to the news items and articles hosted herein.
Latest News
- 17 May 2013NanoSustain Factsheet and Case Studies
- 16 May 2013Making Gold Green: New Non-Toxic Method for Mining Gold
- 13 May 2013Cold atoms for quantum technology
- 02 May 2013Quantum information: Computing with a single nuclear spin in silicon
- 30 April 2013LESL launches start up challenge to celebrate 25th anniversary
- View All


Leave a Comment